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Abstract
We extend the result of weak asymptotic abelianess for Galilei invariant time
evolution from the tracial state to a set of time-invariant states which are
uniformly clustering with respect to space translation.

PACS numbers: 05.30.−d, 05.90.+m

1. Introduction

A realistic physical system should be described in the framework of relativistic quantum field
theory [1]. But in this framework the available concrete results are to a large extent restricted
only to ground states. The construction of temperature states needs some further assumptions
like nuclearity. But even with this assumption it is not clear how the choice of the local states
determines in the limit the global state [2]. If we therefore want to describe and understand
effects of macroscopic systems that justify a thermodynamical limit, but with velocities by
far smaller than the velocity of light, we have turned our interest to simplified models. Here
we can still want to stay on a more abstract level that covers a wide area of phenomena. To
do so we start with a C∗ algebra on which time and space translations are assumed to act
as automorphisms [3]. This includes especially models on lattices, which by construction
admit space translations as automorphisms, and where with appropriate assumptions on the
interaction by analytic perturbation methods time evolution can be shown to exist as an
automorphism. These perturbation methods fail for continuous systems even with short-range
interaction, because lack of thermodynamic stability for at least one sign of the interaction
hinders perturbation theory from converging. Therefore in [4] we proposed an interaction that
does not only vanish when the particles are far apart but also when their relative velocity is very
large so that it becomes impossible that an infinite amount of energy is exchanged between the
particles. This enabled us to construct, again via perturbation theory, a time automorphism on
the standard C∗ algebra of fermions built by creation and annihilation operators.

The advantage of this construction was the fact that time evolution, space translation and
boost are related by Galilei invariance, as it should be in the nonrelativistic limit of quantum
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field theory, a fact which has no counterpart in lattice systems. Galilei invariance connects
space translation and time translation sufficiently so that it can be proven that in the tracial state
where all automorphisms are unitarily implementable time evolution inherits the continuous
spectrum of space translation and therefore also weak asymptotic abelianess. This was proven
in [5]. Weak asymptotic abelianess is a property that refers to a special representation and
implies that two point correlations in time vanish at infinity. It is natural to hope that this
property holds for all extremal time-invariant states, not just for the tracial state. In fact we
tried and succeeded in transferring weak asymptotic abelianess in the tracial state into a weaker
property on the level of the algebra, not just restricted to special states, namely mixing.

Mixing is a property familiar in classical ergodic systems. Transferred to quantum
systems it reflects the fact that operators do not remain local. Already the spreading of
wavefunctions suffices to produce delocalization. Additional interaction should only improve
this delocalization. Mixing in the spirit of ergodic theory is thus a minimal requirement
to understand thermodynamics. However its consequences on correlation functions are not
under control. Weak asymptotic abelianess in all invariant states however would have far-
reaching consequences and is the starting point for many abstract considerations [3], especially
concerning the decomposition into extremal invariant states, or return to equilibrium under
small perturbations. Of course strong asymptotic abelianess respectively norm asymptotic
abelianess, which does not refer to a state, might be even more desirable. Since it holds for
the free evolution at least on the observable algebra, it might also seem probable. But here we
have the counterexample of the XY-model [6, 7] which is definitely not norm asymptotically
Abelian. Though this is a model on a lattice it reflects the effect of interactions between
neighboring points, and it is plausible that it does not behave worse than a continuous system.
Therefore weak asymptotic abelianess is the best we can hope to prove in order to gain good
control on thermodynamic systems. Surprisingly enough it turns out that from the view point
of thermodynamics it is even more powerful than norm asymptotic abelianess: the example
of the Price–Powers shift indicates [8, 9] that weak asymptotic abelianess is as powerful to
describe extremal invariant states and to show why on the macroscopic level we can explain
the phenomena by classical mechanics, but it can be by far more demanding in the search for
invariant states: for almost all price-powers shifts the only invariant state is the tracial state.

Therefore we should not expect that norm asymptotic abelianess could hold in general
for Galilei invariant interactions, but weak asymptotic abelianess should hold in all invariant
states to guarantee good thermodynamical behaviour. In this paper we will succeed in showing
that it holds to arbitrary good precision for a set of invariant states under the assumption of
some uniformity in space clustering. As a by-product it follows that for these states space
translation cannot be broken in time-invariant states.

2. The model

We start with the C∗ algebra [3] built by the creation and annihilation operators a(f ), a†(g)

for which [a(f ), a†(g)]+ = ∫
dx f (x)ḡ(x). In general we consider time evolution given by a

Hamiltonian

H = 1

2m

∫
dx∇xa

†(x)∇xa(x) +
∫

dx dya†(x)a†(y)v(x − y)a(y)a(x).

This defines a time evolution in Fock space but does not allow us to construct a time evolution as
automorphism group on the C∗ algebra. Such an automorphism group is in general constructed
as a perturbation series over the potential, and since at least for one sign of the potential the
Hamiltonian is not bounded from below by −cN , particles can accelerate arbitrarily and
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we cannot expect that time evolution exists for this sign. The generally used estimates on
the convergence of perturbation theory do not depend on the sign and must therefore fail.
If however the potential is such that H > −cN the kinetic energy cannot increase by an
accumulation of the particles and we can expect that the individual particles do not become
too fast. Therefore it is plausible that cutting the interaction for particles with high velocity
should not change physics substantially. This was done in [4] by considering a Hamiltonian

H = 1

2m

∫
dx∇xa

†(x)∇xa(x) +
∫

dp dp′dq dq ′a†
pqa

†
p′q ′v(p − p′, q − q ′))ap′q ′apq. (1)

Here apq = a(W(p, q)f ) are annihilation operators smeared with an f that is translated by
the Weyl operators. As a concrete example we took in [4] f as a Gauss function so that with
appropriate normalization in three dimensions

apq = π− 3
4

∫
d3x e− (q−x)2

2 +ipx a(x).

With such an interaction stability is guaranteed

V � −N‖v‖1, ‖v‖1 = 1

(2π)3

∫
d3x d3p|v(p, x)|.

The effect of the potential on the time evolution can now be calculated in the same way as time
evolution is calculated for lattice systems, and we obtain a time evolution as an automorphism
group τt implemented by the above Hamiltonian.

3. Galilei invariance

We consider again our C∗ algebra built by creation and annihilation operators. On this algebra
we have the following automorphism groups:

space translation σxa(f (y)) = a(f (x + y))

boost γba(f (y)) = a(eibyf (y))

gauge automorphism ναa(f ) = eiαa(f )

time automorphism τt , which we assume to exist.

These automorphisms satisfy the following commutation relations:

σx ◦ να = να ◦ σx, γb ◦ να = να ◦ γb, γb ◦ σx = σx ◦ γb ◦ νbx

Therefore space translations and boost commute on the gauge invariant subalgebra and this
subalgebra is stable under space translation and boost.

Definition. A time evolution is called gauge and Galilei invariant (for simplicity we fix m = 1)
if the following relations hold:

τt ◦ να = να ◦ τt τt ◦ σx = σx ◦ τt
(2)

τt ◦ γb = γb ◦ τt ◦ σbt ◦ ν−b2t/2.

Lemma. The free time evolution τ 0
t a(f̃ (p)) = a

(−ip2t/2
f̃ (p)

)
is Galilei and gauge invariant.

This can easily be seen by its action on an annihilation operator.

Lemma. The time evolution defined by Hamiltonian (1) is gauge and Galilei invariant.

Proof. Since the potential was constructed in such a way that σx[V,A] = [V, σxA],
γb[V,A] = [V, γbA], the time evolution inherits the invariance from the free time evolution,
as is shown in detail in [4]. �
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4. Weak clustering

For convenience we restrict our considerations to the gauge invariant C∗ algebra. Extension
to the total algebra makes it necessary that we have to include the gauge automorphism, but
does not lead to different results. We start with a state ω that is extremal invariant under
space translations and invariant under time translations. We can obtain such a state e.g. if
we take the invariant mean over space translations of a state that is a temperature state and
therefore satisfies the KMS condition (Kubo–Martin–Schwinger) [3, 1] with respect to the
time evolution. Therefore we do not talk about an empty set. If we consider ωb = ω ◦ γb this
state is again extremal invariant under space translation and invariant under time translation.
We smear over the boost and obtain

ωf (A) =
∫

db ω(γbA)f (b)

where we take f (b) to be a positive function with
∫

dbf (b) = 1. We can assume that
it is proportional to e−λ(b−c)2

or a positive linear combination of such functions. ωf can
be decomposed into the extremal space translation invariant states ωb = ω ◦ γb and this
decomposition is unique: taking into account that space translations are norm- and therefore
also weakly asymptotically Abelian it follows that the decomposition of ωf with respect to db

is coarser than the central decomposition or agrees with the central decomposition. Therefore
in the GNS (Gelfand–Naimark Segal) representation [3, 1] corresponding to ωf respectively
in its central decomposition the weak limit with respect to space translations mf (A) exists and
belongs to the center. We can write it therefore in the following way:

w − limx→∞πf (σxA) = w − limx→∞
⊕

f

πb(A) = mf (A) =
⊕

f

ωb(A)1b (3)

exists and belongs to the center. We want to prove that also

w − limt→∞πf (τtA) = mf (A) =
⊕

f

ωb(A)1b (4)

in the corresponding representation for a dense set of operators A. Weak asymptotic abelianess
follows if we can prove: for a dense set of operators A,B and ∀ε > 0 there exists t0(A,B, ε)

such that for t > t0

|〈
f |πf (A)(πf (τtB) − mf (B))|
f 〉| < ε. (5)

We take f (b) to be a convolution and estimate

〈
f |πf (A)(πf (τtB) − mf (B))|
f 〉 =
∫

db〈
b|πb(A)(πb(τtB) − ωb(B)|
b〉f (b)

=
∫

db db′〈
b+b′ |πb+b′(A)(πb+b′(τtB) − ωb+b′(B))|
b+b′ 〉fµ(b′)gµ(b).

With gµ(b′) proportional to e− b′2
µ and

∫
dbgµ(b) = 1 we have with our assumption on f that

fµ(b) > 0 and limµ→0 fµ(b) = f (b). We choose A and B continuous with respect to the
boost such that

‖γbA − A‖ < ε1 ‖γbB − B‖ < ε1 ∀|b| < b0 (6)
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where b0 depends on A,B, ε1. These operators are dense in the C∗ algebra. Accordingly we
choose µ such that

∫
|b|>b0

dbgµ(b) < ε1. This allows us to continue

=
∫

db′fµ(b′)
∫

|b|<b0

db〈
b′ |πb′(γbA)(πb′(γbτtB) − ωb′(B))|
b′ 〉gµ(b) + O(ε1).

Now the Cauchy-Schwartz inequality allows us to estimate up to order ε1, again using the
continuity of γbA∣∣∣∣
∫

db′fµ(b′)
∫

|b|<b0

db〈
b′ |πb′(γbA)(πb′(γbτtB) − ωb′(B))|
b′ 〉gµ(b)

∣∣∣∣
� O(ε1) +

∫
db′fµ(b′)|〈
b′ |(πb′(A)(πb′(A†)|
b′ 〉| 1

2

×
∣∣∣∣
∫

|b|<b0,|b̄|<b0

db db̄〈
b′ |(πb′(γbτtB
†)

−ωb′(B†))(πb′(γb̄τtB) − ωb′(B))|
b′ 〉gµ(b)gµ(b̄)

∣∣∣∣
1
2

. (7)

Using the Galilei invariance of τt (2) the last line can be replaced by∣∣∣∣
∫

|b|<b0,|b̄|<b0

db db̄〈
b′ |(πb′(τtσbtγbB
†) − ωb′(B†))(πb′(τtσb̄t γb̄B)

−ωb′(B))|
b′ 〉gµ(b)gµ(b̄)

∣∣∣∣
1
2

=
∣∣∣∣
∫

|b|<b0,|b̄|<b0

db db̄〈
b′ |(πb′(γbB
†) − ωb′(B†))(πb′(σ(b̄−b)t γb̄B)

−ωb′(B))|
b′ 〉gµ(b)gµ(b̄)

∣∣∣∣
1
2

. (8)

where we have used that the state ωb′ is invariant under space and time translations. Now
however we need an additional assumption on the state: we know that ωb′ is an extremal
invariant state under space translation and therefore clustering in space. Since we integrate
over b′ we have to assume that this clustering is uniform over the integration region of b′.
Using that |b − b̄| � 2b0 this assumption implies that the integral becomes small up to ε

∀|t | � 1
2b0

. b0 determines how we have to choose µ in order to satisfy (6), namely µ has to

be at least of the order b2
0. Therefore (8) becomes small for t of the order |t | � 1√

µ
. Collecting

the estimates we have shown: for a given A in a dense set and a given ε we have to choose µ

small, so that we can use the continuity with respect to the boost in (6) together with the fact
that, as defined in (3), mfµ

(A) approaches weakly mf (A) for µ → 0. But we can choose it
finite so that t � µ−1/2 can still be satisfied. For these t > t0(A,B, ε)

|〈
f |πf (A)(πf (τtB) − mf (b))|
f 〉| < ε.

This fact can be rephrased in the following theorem:

Theorem. Let ω be a state which is extremely space translation invariant and time-invariant,
and ωf the corresponding state smeared with the boost. Assume further that ω and therefore
also ωf are cyclic and separating for πω(A)′′. Assume that the extremal invariant states
cluster uniformly in space. Then for all A that are strongly continuous with respect to the
boost w − limt→∞πf (τtA) = w − limx→∞πf (σxA) = mf (A).
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Note that the set of states ωf constructed in the above way is weakly dense among the
sets of states that are both time and space translation invariant. What is missing so far is the
control on the clustering with respect to space translations.

From this limiting behaviour we can learn more about the time evolution.

Lemma. Let Ut and Vx implement the time evolution and the space translations in the
GNS representation of the state ωf , respectively. Then the projections Pt and Qx onto the
time-invariant, respectively, space invariant vectors obtained as

lim
T →∞

1

2T

∫ T

−T

dt Ut = Pt , lim
X→∞

1

2X

∫ X

−X

dx Vx = Qx

exist, they coincide and satisfy that the invariant operators in the weak closure of the algebra
belong to the center

Ptπf (A)′′Pt = Qxπf (A)′′Qx ⊂ Z. (9)

Proof. Since the projections are bounded operators it is sufficient to control their construction
on a dense set, and this set is given by the operators smooth under the boost. For Qx we
know that space translations are strongly asymptotically Abelian which implies (9).Therefore
the decomposition into extremal space translation invariant states is equal or coarser than the
central decomposition. �

Note that we could control the time convergence to a central operator only for a dense
set of operators. But (9) suffices to guarantee [3, 10] that the decomposition of ωf into time-
invariant states is unique and coincides with the decomposition into space translation invariant
states and thus with the decomposition given by f. But this makes it impossible that space
translation is broken in a time-invariant state. Especially this implies that extremal KMS states
which therefore have trivial center are automatically also space translation invariant, provided
clustering properties with respect to space translation do not change under the boost. Note,
however, that this does not exclude a crystallin structure, since in a Galilei invariant theory
both electrons and nuclei are included.

5. Broken time symmetry

In the last section we started with a time-invariant state and assumed it to be extremal space
invariant. It turned out that as a consequence it is also extremely time-invariant and space
symmetry cannot be broken in a time-invariant state. However we were not able to argue on
the basis of Galilei invariance that time invariance also cannot be broken in space translation
invariant states. We start now with an extremal space invariant state that is only invariant
under τn so that ωα = ω ◦ τα �= ω,∀ 0 < α < 1. We can proceed in the same way as before
constructing ωα,b′ respectively ωα,f . For every fixed α we proceed as before only replacing
limt by limn . Again

lim
x

πα,f (σxA) = lim
n

πα,f (τnA),

but the dependence on α does not disappear so that states periodic in time seem to be possible
on the basis of Galilei invariance.
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